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The quasiharmonic approximation �QHA�, in its simplest form also called the statically constrained �SC�
QHA, has been shown to be a straightforward method to compute thermoelastic properties of crystals. Recently
we showed that for noncubic solids SC-QHA calculations develop deviatoric thermal stresses at high tempera-
tures. Relaxation of these stresses leads to a series of corrections to the free energy that may be taken to any
desired order, up to self-consistency. Here we show how to correct the elastic constants obtained using the
SC-QHA. We exemplify the procedure by correcting to first order the elastic constants of MgSiO3 perovskite
and MgSiO3 postperovskite, the major phases of the Earth’s lower mantle. We show that this first-order
correction is quite satisfactory for obtaining the aggregated elastic averages of these minerals and their veloci-
ties in the lower mantle. This type of correction is also shown to be applicable to experimental measurements
of elastic constants in situations where deviatoric stresses can develop, such as in diamond-anvil cells.
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I. INTRODUCTION

The quasiharmonic approximation �QHA� �Refs. 1 and 2�
is a computationally efficient method for evaluating thermal
properties of materials within the density-functional theory
�DFT� from low to temperatures above the Debye tempera-
ture. It provides high quality high-pressure–high-temperature
materials properties3–8 in a continuous pressure-temperature
�PT� domain in which anharmonic effects are negligible.9

However, it has a not well recognized shortcoming: the non-
hydrostatic nature of thermal stresses in nonisotropic struc-
tures. Broadly speaking, these calculations start by obtaining
the static internal energy of fully relaxed DFT structures at
various pressures. After computations of the vibrational den-
sity of states, the thermal energy contribution to the Helm-
holtz free energy is added. This latter contribution has aniso-
tropic strain gradients and produces deviatoric stresses. This
straightforward procedure should be referred to as the stati-
cally constrained �SC� QHA. It has been used to compute the
elastic constant tensor of isotropic3 and nonisotropic
minerals4,6 at high PT as well, even though pressure condi-
tions were not precisely hydrostatic in the latter calculations.
In general, relaxation of deviatoric stresses, irrespective of
their origin, is essential in both experiments10 and theory9 for
generating realistic and reproducible structural and elastic
properties.

Here we show how to correct the elastic constant tensor
obtained using the SC-QHA. We exemplify the procedure by
correcting to first order the elastic constants of MgSiO3 per-
ovskite �PV� and MgSiO3 postperovskite �PPV�, the major
phases of the Earth’s lower mantle, for which elasticity data
are essential to interpret seismic information of this region.11

We show that this first-order correction is quite satisfactory
for obtaining the aggregated elastic averages of these miner-
als and their acoustic velocities in the PT range of the lower
mantle.

This article is organized as follows: we first discuss the
equations used for numerically determining the elastic con-

stant tensor within the SC-QHA. We then describe the pro-
cedure for correcting it to first order for deviatoric thermal
stresses. We then evaluate these corrections to the previously
reported elastic constant tensors of PV �Ref. 4� and PPV.6

II. ELASTICITY WITHIN AND BEYOND THE
STATICALLY CONSTRAINED QHA

The present procedure builds on a related procedure to
correct structural parameters and equations of state of
nonisotropic solids at high PTs.9 The method introduced in
Ref. 9 can correct the SC crystal structure at V�P ,T� to infi-
nite order as long as the SC elastic constant tensor is simul-
taneously corrected. However, this is a very demanding com-
putational procedure and, fortunately, unnecessary. A first-
order correction to the crystal structure using the SC elastic
constant appears to be sufficient. This conclusion was
reached after examining the crystal structure of one of the
most studied materials at high PT: MgSiO3 perovskite.12 This
type of experimental data is quite limited and results on other
materials with similarly complex crystal structures would be
helpful to strengthen this conclusion.

According to the �SC� QHA the Helmholtz free energy is
given by

F�V,T� = �E�V� + �
qj

��qj�V�
2 � + kBT�

qj

ln�1 − e−��qj�V�/kBT� ,

�1�

where kB and � are, respectively, Boltzmann’s and Planck’s
constants. The first term, E�V�, is the volume-dependent
static energy obtained after full structural relaxation under
isotropic pressure, and ��V� is the corresponding phonon
spectrum. Both phonon spectrum and static energy are here
determined using the DFT within the local-density approxi-
mation �LDA�,13 but the methodology is general and appli-
cable to any first-principles method. Structural relaxations
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are performed using a variable cell shape �VCS� algorithm,14

and phonon spectra are computed using the PWSCF code15

as described in Ref. 16, based on the linear-response theory.
The second term in Eq. �1� is the zero-point energy, FZP,
such that the sum of the terms in the brackets is the energy at
T=0 K. The last term in Eq. �1� is the thermal excitation
energy, Fth �see Ref. 2 for details�.

Pressure, P, is obtained from F using the standard ther-
modynamics relation

P = −� �F

�V
�

T

. �2�

This procedure implicitly assumes that P remains isotropic at
all temperatures, but this is only true for static calculations,
where structures were optimized at target pressures. The two
frequency dependent terms in Eq. �1�, the zero-point energy
and the thermal energy, contribute to P but their strain gra-
dients are intrinsically anisotropic. This effect was recently
quantified9 by the computation of deviatoric thermal stresses,
��k, defined as the difference between the stress tensor and
the nominal pressure �diagonal� tensor. In Voigt’s notation

��k =� 1

V0

�G�P,T�
��k

�
P,T

− H�3 − k�P, for k = 1, . . . ,6,

�3�

where H�n� is the Heaviside step function, equal to 0 for
�3−k� strictly negative and 1 otherwise. Deviatoric thermal
stresses are caused by the vibrational �zero-point and ther-
mal� energies and are shown to be important at high pres-
sures and temperatures. The larger the temperature, the more
visible these stresses are.

We have previously shown that these deviatoric stresses
can be relaxed to first order if one knows the elastic constant
tensor, cij�P ,T�, calculated within the �SC� QHA.9 The latter
are obtained from the Gibbs free energy, G,

G�P,T� = F + PV �4�

by calculating the second derivative of G with respect to the
strains �i and � j:

4,17

cij�P,T� =
1

V0
� �2G

��i � � j
�

T

. �5�

The adiabatic elastic constants, which are the relevant ones
for interpretation of seismic data, are then computed using
appropriate thermodynamics relations.4,18 Below all calcu-
lated elastic constants, bulk and shear moduli, and velocities
are adiabatic.

Lattice parameters at high pressures and temperatures un-
der hydrostatic conditions can then be corrected to first order
by evaluating the strains, �k, involved in the relaxation of the
deviatoric thermal stresses given in Eq. �3�

�k�P,T� = �
m=1

6

ckm
−1�P,T���m. �6�

The Cartesian components of the relaxed lattice vectors are
then

h� = h�I − �� , �7�

where

h = �ax bx cx

ay by cy

az bz cz
� and � = � �1 �6/2 �5/2

�6/2 �2 �4/2
�5/2 �4/2 �3

�
are, respectively, the matrices of lattice vectors �a� ,b� ,c�� and
Cartesian strains �keeping up with Voigt’s notation�. Notice
that increase in symmetry or symmetry break �phase trans-
formations� may be induced by deviatoric thermal stresses in
the presence of soft phonon, i.e., h and h� do not necessarily
have to the same space group.

In Ref. 9 we pointed that attainment of zero deviatoric
thermal stresses within the QHA should involve a self-
consistent cycle with simultaneous recalculation of the elas-
tic constant tensor under hydrostatic condition followed by
new structural relaxation, and so on. However, such proce-
dure is extremely computationally intensive given the need
to recompute vibrational density of states on a PT grid every
step of the cycle. We show next how to obtain the elastic
constant tensor corrected to first order with knowledge of Eq.
�6� only.

The components of the elastic constant tensor expanded in
a Taylor series of strains �in Voigt’s notation� defined by Eq.
�6� are

cij�P,T,�� = cij�P,T,0� + �
k=1

6 � �cij

��k
�

P,T
�k

+ �
k=1

6

�
l=1

6 � �2cij

��k � �l
�

P,T
�k�l + . . . . �8�

Neglecting second and higher order terms one has

cij�P,T,�� = 	 cij�P,T�

+ �
k=1

6

�
m=1

6 � �cij

�P
�

P,T
� �P

��m
�

P,T
� ��m

��k
�

P,T
�k,

=cij�P,T� + � �cij

�P
�

P,T
�
m=1

3 � �P

��m
�

P,T
��m. �9�

In the last step above we assumed that pressure is unaffected
by shear stresses, i.e., 
�P / ��m 
P,T=0 for m=4, 5, and 6,
thus reducing the index summation from 6 to 3. The stress
derivatives of P in Eq. �9� are determined using the defini-
tion of the pressure as the trace of the stress tensor, P
� 1 / 3�m=1

3 �m. Taking the derivative of the pressure as func-
tion of each stress leads to 
�P / ��m 
P,T= 1 / 3, for m=1, 2,
and 3. Therefore the first-order corrected elastic constants at
the strains given by Eq. �6� is reduced to

cij�P,T,�1,�2,�3� = cij�P,T� +
1

3
� �cij

�P
�

P,T
���, �10�

where ���=�k=1
3 ��k. This correction requires only knowl-

edge of the pressure derivatives of cij’s which are known
from the statically constrained QHA calculation, and the de-
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viatoric thermal stresses given by Eq. �3�. It gives to first
order the elastic constants corrected for deviatoric stresses
without having to explicitly calculate Gibbs free energy at
the relaxed lattice parameters.

The correction is a general approach to elasticity to be
applied within the limit of validity of the quasiharmonic ap-
proximation. We have not addressed elasticity beyond this
limit, which should somehow include anharmonic correc-
tions. Here it is assumed that the free energy �Eq. �1� is
computed correctly at high temperatures and that all appro-
priate excitations are accounted for, including in general
electronic thermal and magnetic ones. Electronic thermal ex-
citations are important in metals.8 The standard method for
dealing with metals is to perform DFT calculations using the
Mermin functional.19,20 Phonon frequencies also can be
much affected by these excitations and the calculated ther-
modynamics properties.21 In magnetic systems the magnetic
�spin� excitations also need to be included in the computation
of free energies of Eq. �1�. These can be in the form of
magnons �for metals or insulators�, or in the form of a pure
entropy term in the case of paramagnetic insulators.21 As far
as the free energy of the system in consideration is properly
computed, the current scheme provides a method for obtain-
ing elastic constants to arbitrary accuracy by iterating the
computations of elastic constants to arbitrary order.

As a final remark, we point that Eq. �10� could also be
used and tested on experimental data as a mean for correct-
ing any type of deviatoric stresses, as long as the stress de-
viations remain small compared to the hydrostatic pressure
�in a limit for the Taylor expansion to be valid�. The correc-
tion only requires knowledge of �i� the three components
��k, k=1,2 ,3, and at the same time �ii� the pressure varia-
tion in the elastic constants at specified P and T: 


�cij

�P 
P,T.
Principal strain deviations, �� and ��, are measurable quan-
tities, for instance, using diffraction ring measurements10 and

their corresponding stresses are therefore also available from
experiments. Pressure variation in the elastic constants22 are
measurable quantities23 that require only few additional runs
for estimating experimentally the pressure derivative of cij at
given PT’s. Eventual experimental setting that combines si-
multaneously measurements of �i� and �ii� above can be used
to measure the correction to the elastic constants due to de-
viatoric stresses in DAC apparatus after applying Eq. �10�.

III. ELASTIC CONSTANTS OF PV AND PPV

We present in this section new results on the deviatoric
thermal stresses of PPV and the correction to the elastic con-
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FIG. 1. �Color online� �a� Deviatoric thermal stresses in PPV; �b� percentage lattice-constant corrections in PPV. ��1 and ��2 have
opposite signs and similar magnitude, similarly to the case of PV �Ref. 9�. However, ��3 in PPV is considerably larger than in PV.
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FIG. 2. �Color online� Sum of diagonal deviatoric stresses for
�a� PV and �b� PPV, as defined in Eq. �10�. This sum is considerably
larger in PPV because of the larger contribution from ��3 in PPV.
Note that the pressure ranges between PV and PPV differ, corre-
sponding to their respective QHA regions of validity �Ref. 9�.
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stants obtained using the �SC� QHA.6 Since deviatoric ther-
mal stresses of PV were recently published,9 we also give
here the corresponding correction to the elastic constants of
PV.

The PT dependent elastic constant tensors of PV and PPV
determined using the �SC� QHA have been reported, respec-
tively, in Refs. 4 and 6. These are the major phases of the
Earth’s lower mantle and their elastic properties are central
information for the interpretation of the seismic properties of
this inaccessible region in terms of temperature, composi-
tion, and mineralogy. PV and PPV are both orthorhombic
crystals, respectively, with symmetry Pbnm and Cmcm. This
difference of symmetry group implies in particular, as stated
in Ref. 6, that “the �100PPV, �010PPV, and �001PPV direc-

tions in the Cmcm structure correspond to the �11̄0PV,
�110PV, and �001PV in the Pbnm structure, respectively,”

corresponding to a rotation of 45° of the a�-b� reciprocal lat-
tices. Lattice deformations and deviatoric thermal stresses
between PV and PPV are thus comparable only through this
transformation. Figure 1�a� shows the deviatoric thermal
stresses for PPV. Equivalent results for PV have recently
been reported in Ref. 9 along with the analysis of its crystal-
line structure at high PT. The deviatoric stresses ��1 and ��2
in PPV have opposite sign but similar magnitudes to that of

PV �see Ref. 9�, except along the c� crystalline axes. As stated
above, deviatoric thermal stresses for PV and PPV induce

distinct deformations along lattices a� and b� . The deviatoric
thermal stresses in the z direction of PPV is considerably
larger than the corresponding one in PV leading to larger
corrections in PPV than in PV, as shown below. Figure 1�b�
shows the percentage corrections to the lattice parameters of
PPV, based on Eq. �6�. Interestingly, Fig. 1 shows that zero-
point energy �the black zero Kelvin line in that figure� also
produces deviatoric stresses. With increasing temperature,
these stresses are enhanced but their origin is the anisotropic
nature of the phonon dispersions.

Figure 2 shows the resulting summation of the three de-
viatoric thermal stresses ��� �of Fig. 1�a� for PPV �and see
Ref. 9 for PV’s deviatoric thermal stresses�. It represents the
first of the two ingredients necessary for the correction given
by Eq. �10�. Clearly, the correction for PPV is considerably
larger than the one for PV. This is mostly due to ��3 that is
larger in PPV than in PV �see above�. The correction for PPV
is always negative, which has the effect of decreasing its
elastic constants, while for PV, the correction can be negative
�mostly at low temperature� or positive �mostly at high tem-
perature�. In principle, there are no reasons for having devia-
tions of systematic nature and they should vary depending on
the crystalline structure. One observation that remains true
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for all crystalline structures, however, is that positive devia-
tions in one direction are to be compensated by a negative
deviation in another direction, as observed in both PV and
PPV.

Figure 3 shows the pressure derivatives, �cij /�P, of all the
elastic constants of PV and PPV, which is the second ingre-
dient required for the correction according to Eq. �10�. The
figure shows the variations in cij with pressure for only two
temperatures, 0 and 3000 K, the latter being close to the
temperature of the D� layer in the lower mantle, where the
PPV phase is important in the geophysical models.11

Figure 4 shows the corrected bulk and shear moduli, after
applying Hill’s24 �arithmetic� average to the elastic constants,
at several temperatures. The corrections are largest at high
pressure and high temperature in both PV and PPV. The na-
ture of the correction is also structure dependent. Notice that
the general aspect of the correction to the bulk moduli in Fig.
4 is similar to ��� displayed in Fig. 2, indicating that the
dominant term in the correction of Eq. �10� is the deviatoric
thermal stress, and to a lesser extent the pressure derivatives
of the elastic constants. However, all corrections remain rela-
tively small, meaning the �SC� QHA calculation does not
suffer from significant deviatoric thermal stresses, although
they can very well be corrected to any level of accuracy.

Table I summarizes the corrections to the �SC� QHA for
the elastic constants at T=3000 K for two pressures, P
=100 GPa and P=120 GPa. Corrections are given in paren-
theses. Bulk and shear moduli calculated using Voigt �uni-
form strain�, Reuss �uniform stress�, and Hill �arithmetic av-
erage between Voigt and Reuss� are shown.24 The volume
correction, abc� �1−�1��1−�2��1−�3�, as shown in Fig.
1�b�, is reported as density 	�P ,T�. Velocities are then evalu-
ated from Voigt-Reuss-Hill moduli since it provides a realis-
tic estimation of the true moduli. Notice that velocities are
only slightly modified because moduli are corrected along
with the density; therefore, their ratio remains relatively un-
altered.

IV. CONCLUSIONS

In summary, we have introduced a scheme to correct high
PT elastic constants obtained using the statically constrained
quasiharmonic approximation for deviatoric thermal stresses
that develop in calculations of anisotropic structures. This
self-consistent scheme was used to compute to first order the
elastic constants of the geophysically important MgSiO3 per-
ovskite and MgSiO3 postperovskite phases of the lower
mantle. The corrections introduced by relaxation of these
deviatoric stresses are quite small at relevant conditions of
the lower mantle and previous �SC� QHA results remain es-
sentially unchanged. However, this might not be the general
case and the current scheme may be used to arbitrary order

for computing high PT elastic constants to the desired level
of accuracy.
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TABLE I. Elastic moduli of PV �Ref. 4� and PPV �Ref. 7� with
corrections given in parenthesis as described by Eq. �10�. Pressure
and elastic constants are in GPa, velocities in km/s, temperature in
K, densities, 	, in g /cm3. The corrections are significant for bulk
and shear moduli. Velocities are only slightly changed by the cor-
rection. VP=��KH+4 /3GH� /	, VS=�GH /	, V
=�KH /	, and 

=KH /	, where upper indices R, V, and H represent Reuss, Voigt,
and the Hill averages �Ref. 24�. Notice that 
=VP

2 −4 /3VS
2. Veloci-

ties are calculated using the Hill averages. Decimal digits are pre-
sented to show the magnitude of the corrections. However, except
for 	, the accuracy of results should not include decimal digits.

3000 K, 100 GPa 3000 K, 120 GPa

PV PPV PV PPV

c11 774.8�0.0� 933.4�−3.3� 844.4 �0.3� 1069.5�−2.8�
c22 941.7�0.0� 756.0�−2.1� 1049.9 �0.5� 846.8�−1.9�
c33 928.5�0.0� 949.0�−2.9� 1034.9 �0.5� 1072.5�−2.6�
c44 287.2�0.0 215.8�−1.7� 313.6 �0.1� 286.6�−1.4�
c55 251.0�0.0� 164.4�−1.1� 265.6 �0.1� 211.1�−1.0�
c66 248.4�0.0� 253.3�−1.6� 276.4 �0.1� 314.9�−1.2�
c12 452.7�0.0� 376.7�−1.3� 520.4 �0.3� 433.4�−1.2�
c13 373.9�0.0� 370.6�−1.0� 421.3 �0.2� 413.3�−0.9�
c23 406.5�0.0� 434.3�−1.1� 455.7 �0.2� 481.1�−1.0�
KV 567.9�0.0� 555.7�−1.7� 636.0 �0.3� 627.2�−1.5�
KH 565.2�0.0� 553.3�−1.7� 632.2 �0.3� 624.3�−1.5�
KR 562.4�0.0� 550.8�−1.7� 628.4 �0.3� 621.5�−1.5�
GV 251.4�0.0� 223.8�−1.2� 273.3 �0.1� 273.3�−1.0�
GH 249.2�0.0� 219.5�−1.2� 270.1 �0.1� 268.6�−1.0�
GR 247.0�0.0� 215.2�−1.2� 267.0 �0.1� 263.9�−1.0�
	 5.04�0.00� 5.11�−0.01� 5.22 �0.00� 5.29�−0.01�
VP 13.35�0.00� 12.87�−0.01� 13.79 �0.01� 13.63�−0.01�
VS 7.03�0.00� 6.56�−0.01� 7.20 �0.00� 7.13�−0.01�
V
 10.59�0.00� 10.41�−0.01� 11.01 �0.00� 10.86�0.00�

 112.20�0.02� 108.33�−0.10� 121.21 �0.06� 118.02�−0.11�
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